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Sustainability

Agendas and agreements

Chemistry’s roles

Systems thinking

Systems thinking in chemistry

Matlin, Mehta, Hopf, Krief

= Nature Chemistry 2015, 7, 941-943
= Nature Chemistry 2016, 8, 393-396

Systems thinking in chemistry education

Mahaffy, Matlin, et al

=  Nature Reviews Chemistry 2018, 2, 1-3. http://rdcu.be/J9ep
= Nature Sustainability 2019, in press

= Journal of Chemical Education 2019, submitted



Life-Cycle Assessment
Sustainability science

Sustainability

Chemistry’s role Reduce
Environmental chemistry n
Green chemistry Recyc.e‘ ’ a

3Rs logo
USA: Earth Day

One-world chemistry & systems thinking 22 April 1970
3Rs Initiative: Reduce, Reuse, Recycle

« Makes extensive use of green chemistry & Life Cycle Assessments
* Cradle-to-cradle
« Circular economy
» breaking the global ‘take, make, consume and dispose’ pattern of growth
» private sector: Triple Bottom Line (John Elkington, 1994):
social, environmental, financial
» Zero waste movement
» Circular chemistry
» Post-trash
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Waste does not exist: there is only post-trash

By: Henning Hopf, Alain Krief, Goverdhan Mehta, Stephen A. Matlin

On Earth Day (22 April 2019), 1t 1s sobering to recall that the World Bank has estimated that global
generation of solid waste currently exceeds 2 billion tonnes per year and will rise by 70 per cent by

2050.
~
~

“We need to stop thinking of any materials as being waste and the very concept of waste matter
should disappear.”

https://www.scidev.net/global/environment/opinion/waste-does-not-exist-there-is-only-post-trash.html




Sustainability

Agendas and agreements

health

Chemistry’s roles

Key linkages in concepts and approaches
« All recognize interdependence between human activity, human and animal
health and the biological and physical environments of the planet.
* Prevention, mitigation, clean-up, recycling, etc, require major inputs from
chemistry: understanding of the molecular basis of sustainability* and
using systems thinking
» Green chemistry through design —chemists can no longer plead ignorance
— they possess ultimate responsibility for consequences in the design.

» "By understanding that many of our environmental concerns are derived
from molecular characteristics... chemists can realize that many of the
solutions are, potentially, also molecular.”

* P. Anastas, J. B. Zimmerman. The Molecular Basis of Sustainability. Chem 2016, 1, 10-12

% Systems thinking can be seen as an interconnecting thread that runs
through and unites all these approaches to sustainability.



Sustainability

Agendas and agreements

health

Chemistry’s roles

Key linkages in concepts and approaches

« All recognize interdependence between human activity, human and animal
health and the biological and physical environments of the planet.

* Prevention, mitigation, clean-up, recycling, etc, require major inputs from
chemistry: understanding of the molecular basis of sustainability* and
using systems thinking

» “the ways in which the material basis of society and the economy underlie
considerations of how present and future generations can live within the
limits of the natural world.”

« central role for chemistry in analyzing, synthesizing, and transforming
the material basis of society
 establishes need for both the practice of chemistry and education in and

about chemistry to address sustainability of earth and societal systems.
*P.G. Mahaffy, S.A. Matlin, T.A. Holme, J. MacKellar, Nature Sustainability, 2019, in press.

% Systems thinking can be seen as an interconnecting thread that runs
through and unites all these approaches to sustainability. o
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Infusing Systems Thinking

into (Post)-Secondary
| P A C General Chemistry Education

International Union of Pure

and Applied Chemistry ST I C E
Supported by
International )
Organization f IUPAC Project # 2017-010-1-050
. Ch;?:}g:;aslggnggs J Systems Thinking in Chemistry Education
I0CD Development An IUPAC Project

Help students move from fragmented/reductionist knowledge of chemical
reactions and processes to a more holistic view, equipping them to be better
able to:
» understand chemistry: seeing chemistry itself as an organized system of
materials, processes, and products regulated by physical principles
» engage in cross-disciplinary work: seeing how knowledge of chemistry
can be leveraged to better understand molecular-level processes in other
disciplines
» address emerging global challenges: seeing how chemical processes
contribute to and interact with Earth and societal systems to impact
planetary sustainability
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Concept map

[Focus question: What is the structure of the Universe?]
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J.D. Novak, A.J. Cafias. The Theory Underlying Concept Maps and How to Construct and Use Them, Technical Report IHMC CmapTools 2006-01
Rev 01-2008, Florida Institute for Human and Machine Cognition, 2008. http://cmap.ihmc.us/docs/pdf/TheoryUnderlyingConceptMaps.pdf
http://cmap.ihmc.us/docs/theory-of-concept-maps



http://cmap.ihmc.us/docs/pdf/TheoryUnderlyingConceptMaps.pdf
http://cmap.ihmc.us/docs/theory-of-concept-maps
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The most important technological invention of the 20t Century?
N>(g2) + 3H,(g) =— 2NH;j(g)

Haber-Bosch Process
e

* NH; plant produces 1,000-3,000 t/day
« World production 2017 c. 175Mt
* c. 85% used in agriculture

Without the N fertilizers spread on the fields, from the Haber-Bosch
synthesis of ammonia, almost two-fifths of the world’s population would
not be here - and our dependence will only increase as the global count
moves from six to nine or ten billion people.

Vaclav Smil, Nature 1999, 400, 415




The most important technological invention of the 20" Century?
N>(2) + 3H»(g) 2NH;3(g)

Feeding the world...
..yet, a failure of systems thinking in chemistry?

Making and using N fertilizer
« High demand for energy

1.8% of global fossil fuel consumption in 2017
« Wasteful of N

N fertilizer N fertilizer \ N N \
produced applied in crop harvested in food consumed

vegetarian
diet

N fertilizer N fertilizer
produced applied in crop in feed in store consumed

.T‘ I ‘ I : H : H carnivorous
diet

- 47 - 16 - 24 -3

Mabhaffy et. al, Chemistry: Human Activity, Chemical Reactivity, Nelson/Cengage, 2015
« Damaging to environment
Air, land, oceans
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Reactive N SOCME
Systems-oriented concept map extension
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Reactive N SOCME

ENERGY INPUT
SUBSYSTEM
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Reactive N SOCME
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Reactive N SOCME
Systems-oriented concept map extension
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Journal of Chemical Education Call for Papers—Special Issue on
Reimagining Chemistry Education: Systems Thinking, and Green
and Sustainable Chemistry

Peter G. Mahafly,*'® Edward J. Brush,” Julie A. Haack," and Felix M. Ho'®

"Department of Chemistry, The King's University, Edmonton, Alberta T6B 2H3, Canada

i-Department of Chemical Sciences, Bridgewater State University, Bridgewater, Massachusetts 02325, United States
§Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
'Department of Chemistry, Angstrom Laboratory, Uppsala University, SE-751 20 Uppsala, Sweden

ABSTRACT: The Journal of Chemical Education announces a call for papers for an upcoming special issue on Reimagining
Chemistry Education: Systems Thinking, and Green and Sustainable Chemistry.

KEYWORDS: High School/Introductory Chemistry, First-Year Undergraduate/General, Upper-Division Undergraduate,
Curriculum, Environmental Chemistry, Interdisciplinary/Multidisciplinary, Problem Solving/Decision Making, Green Chemistry,
Learning Theories, Student-Centered Learning, Systems Thinking, Sustainability
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