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Concerns and concepts

Agendas and agreements

Chemistry’s roles

Systems thinking

Sustainability

Systems thinking in chemistry
Matlin, Mehta, Hopf, Krief
▪ Nature Chemistry 2015, 7, 941-943

▪ Nature Chemistry 2016, 8, 393-396

Systems thinking in chemistry education
Mahaffy, Matlin, et al
▪ Nature Reviews Chemistry 2018, 2, 1-3. http://rdcu.be/J9ep
▪ Nature Sustainability 2019, in press
▪ Journal of Chemical Education 2019, submitted



Chemistry’s role

Environmental chemistry

Green chemistry

Life-Cycle Assessment

Sustainability science

One-world chemistry & systems thinking

3Rs Initiative: Reduce, Reuse, Recycle

• Makes extensive use of green chemistry & Life Cycle Assessments

• Cradle-to-cradle

• Circular economy

➢ breaking the global ‘take, make, consume and dispose’ pattern of growth

➢ private sector: Triple Bottom Line (John Elkington, 1994):

social, environmental, financial

➢ Zero waste movement

➢ Circular chemistry

➢ Post-trash

3Rs logo

USA: Earth Day

22 April 1970

Sustainability
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https://www.scidev.net/global/environment/opinion/waste-does-not-exist-there-is-only-post-trash.html



Concerns and concepts

Agendas and agreements

Chemistry’s roles

human 

health 

animal 

health 
environment

Sustainability

Key linkages in concepts and approaches

• All recognize interdependence between human activity, human and animal 

health and the biological and physical environments of the planet. 

• Prevention, mitigation, clean-up, recycling, etc, require major inputs from 

chemistry: understanding of the molecular basis of sustainability* and 

using systems thinking

➢ Green chemistry through design –chemists can no longer plead ignorance 

– they possess ultimate responsibility for consequences in the design. 

➢ “By understanding that many of our environmental concerns are derived 

from molecular characteristics… chemists can realize that many of the 

solutions are, potentially, also molecular.”

* P.  Anastas, J. B. Zimmerman. The Molecular Basis of Sustainability. Chem 2016, 1, 10-12

❖ Systems thinking can be seen as an interconnecting thread that runs 

through and unites all these approaches to sustainability.
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Key linkages in concepts and approaches

• All recognize interdependence between human activity, human and animal 

health and the biological and physical environments of the planet. 

• Prevention, mitigation, clean-up, recycling, etc, require major inputs from 

chemistry: understanding of the molecular basis of sustainability* and 

using systems thinking

➢ “the ways in which the material basis of society and the economy underlie 

considerations of how present and future generations can live within the 

limits of the natural world.”

• central role for chemistry in analyzing, synthesizing, and transforming 

the material basis of society

• establishes need for both the practice of chemistry and education in and 

about chemistry to address sustainability of earth and societal systems.
*P.G. Mahaffy, S.A. Matlin, T.A. Holme, J. MacKellar, Nature Sustainability, 2019, in press.

❖ Systems thinking can be seen as an interconnecting thread that runs 

through and unites all these approaches to sustainability.



IUPAC Project # 2017-010-1-050

Help students move from fragmented/reductionist knowledge of chemical 

reactions and processes to a more holistic view, equipping them to be better 

able to:

➢ understand chemistry: seeing chemistry itself as an organized system of 

materials, processes, and products regulated by physical principles

➢ engage in cross-disciplinary work: seeing how knowledge of chemistry 

can be leveraged to better understand molecular-level processes in other 

disciplines

➢ address emerging global challenges: seeing how chemical processes 

contribute to and interact with Earth and societal systems to impact 

planetary sustainability

Infusing Systems Thinking 

into (Post)-Secondary 

General Chemistry Education

STICE

International 

Organization for 

Chemical Sciences 

in Development

Supported by
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Concept map

J.D. Novak, A.J. Cañas. The Theory Underlying Concept Maps and How to Construct and Use Them, Technical Report IHMC CmapTools 2006-01 
Rev 01-2008, Florida Institute for Human and Machine Cognition, 2008. http://cmap.ihmc.us/docs/pdf/TheoryUnderlyingConceptMaps.pdf
http://cmap.ihmc.us/docs/theory-of-concept-maps

Connections

Concept labels
- objects
- ideas
- effects

http://cmap.ihmc.us/docs/pdf/TheoryUnderlyingConceptMaps.pdf
http://cmap.ihmc.us/docs/theory-of-concept-maps


Concept map Biogeochemical flow CO2
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Haber-Bosch Process 

The most important technological invention of the 20th Century?

• NH3 plant produces 1,000-3,000 t/day

• World production 2017 c. 175Mt

• c. 85% used in agriculture

Without the N fertilizers spread on the fields, from the Haber-Bosch
synthesis of ammonia, almost two-fifths of the world’s population would
not be here - and our dependence will only increase as the global count
moves from six to nine or ten billion people.

Vaclav Smil, Nature 1999, 400, 415



Feeding the world…
…yet, a failure of systems thinking in chemistry?

Making and using N fertilizer

• High demand for energy

1.8% of global fossil fuel consumption in 2017

• Wasteful of N

Mahaffy et. al, Chemistry:  Human Activity, Chemical Reactivity, Nelson/Cengage, 2015

• Damaging to environment

Air, land, oceans
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- 6 - 16 - 24 - 3- 47
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in feed
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in store
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diet
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The most important technological invention of the 20th Century?
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REACTION CONDITIONS 
SUBSYSTEM

Systems-oriented concept map extension

N2(g) + 3H2(g) 2NH3(g)

ΔHo = -92; ΔGo = -33 (kJ mol-1) 
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ΔHo = -92; ΔGo = -33 (kJ mol-1) 

Application of 
Le Chatelier Principle
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OSTWALD PROCESS
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of

Carbon dioxide
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By-
product

Connects to CO2  SOCME

Synthesis gas: H2, CO, CO2, H2O
from fossil fuels by ‘steam 
reforming’ (high T, P)

CH4 + H2O                CO + 3H2

CO4 + H2O                CO2 + H2

Up to 3.5t CO2

for every 1t NH3
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